Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Document Type
Year range
1.
preprints.org; 2021.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-202107.0639.v1

ABSTRACT

Currently available COVID-19 mRNA vaccines have demonstrated high efficacy in clinical trials.1-3 However, cancer patients, including those with hematological malignancies, were largely excluded from these trials. In this prospective, observational study we measured anti-S protein IgG titers as well as avidity in lymphoma patients (n=67) vaccinated with a COVID-19 mRNA vaccine. Serological response rates in lymphoma patients who were treatment naïve (100% in CLL, 88.9% in other, non-CLL non-Hodgkin lymphoma patients), or who were last treated more than 24 months prior to vaccination (100% in CLL, 90% in other-NHL), were similar to healthy controls (100%). Patients on active therapy, however, had a diminished response rate (40% in CLL, 21.0% in other-NHL). No patient who received anti-CD20 monoclonal antibodies (mAb) within six months of vaccination responded. Thus, the utility of testing anti-S titers should be explored in patients on active therapy or with recent anti-CD20 mAb exposure, to assess their response to vaccination. We also propose studying passive protection with S-protein mAbs as an alternative prophylactic strategy for patients who respond poorly to vaccination.


Subject(s)
COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.26.21257441

ABSTRACT

Emerging SARS-CoV-2 variants pose a threat to human immunity induced by natural infection and vaccination. We assessed the recognition of three variants of concern (B.1.1.7, B.1.351 and P.1) in cohorts of COVID-19 patients ranging in disease severity (n = 69) and recipients of the Pfizer/BioNTech vaccine (n = 50). Spike binding and neutralization against all three VOC was substantially reduced in the majority of samples, with the largest 4-7-fold reduction in neutralization being observed against B.1.351. While hospitalized COVID-19 patients and vaccinees maintained sufficient neutralizing titers against all three VOC, 39% of non-hospitalized patients did not neutralize B.1.351. Moreover, monoclonal neutralizing antibodies (NAbs) show sharp reductions in their binding kinetics and neutralizing potential to B.1.351 and P.1, but not to B.1.1.7. These data have implications for the degree to which pre-existing immunity can protect against subsequent infection with VOC and informs policy makers of susceptibility to globally circulating SARS-CoV-2 VOC.


Subject(s)
COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.11.434841

ABSTRACT

Vaccines are critical for curtailing the COVID-19 pandemic. In the USA, two highly protective mRNA vaccines are available: BNT162b2 from Pfizer/BioNTech and mRNA-1273 from Moderna. These vaccines induce antibodies to the SARS-CoV-2 S-protein, including neutralizing antibodies (NAbs) predominantly directed against the Receptor Binding Domain (RBD). Serum NAbs are induced at modest levels within ~1 week of the first dose, but their titers are strongly boosted by a second dose at 3 (BNT162b2) or 4 weeks (mRNA-1273). SARS-CoV-2 is most commonly transmitted nasally or orally and infects cells in the mucosae of the respiratory and to some extent also the gastrointestinal tract. Although serum NAbs may be a correlate of protection against COVID-19, mucosal antibodies might directly prevent or limit virus acquisition by the nasal, oral and conjunctival routes. Whether the mRNA vaccines induce mucosal immunity has not been studied. Here, we report that antibodies to the S-protein and its RBD are present in saliva samples from mRNA-vaccinated healthcare workers (HCW). Within 1-2 weeks after their second dose, 37/37 and 8/8 recipients of the Pfizer and Moderna vaccines, respectively, had S-protein IgG antibodies in their saliva, while IgA was detected in a substantial proportion. These observations may be relevant to vaccine-mediated protection from SARS-CoV-2 infection and disease.


Subject(s)
COVID-19 , Infections
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.19.20235044

ABSTRACT

The association of mortality with early humoral response to SARS-CoV-2 infection within the first few days after onset of symptoms (DAOS) has not been thoroughly investigated partly due to a lack of sufficiently sensitive antibody testing methods. Here we report two sensitive and automated testing-on-a-probe (TOP) biosensor assays for SARS-CoV-2 viral specific total antibodies (TAb) and surrogate neutralizing antibodies (SNAb), which are suitable for clinical use. The TOP assays employ an RBD-coated quartz probe using a Cy5-Streptavidin-polysacharide conjugate to improved sensitivity and minimize interference. Disposable cartridge containing pre-dispensed reagents requires no liquid manipulation or fluidics during testing. The TOP-TAb assay exhibited higher sensitivity in the 0-7 DAOS window than a widely used FDA-EUA assay. The rapid (18 min) and automated TOP-SNAb correlated well with two well-established SARS-CoV-2 virus neutralization tests. The clinical utility of the TOP assays was demonstrated by evaluating early antibody responses in 120 SARS-CoV-2 RT-PCR positive adult hospitalized patients. Higher baseline TAb and SNAb positivity rates and more robust antibody responses were seen in patients who survived COVID-19 than those who died in the hospital. Survival analysis using the Cox Proportional Hazards Model showed that patients who were TAb and SNAb negative at initial hospital presentation were at a higher risk of in-hospital mortality. Furthermore, TAb and SNAb levels at presentation were inversely associated with SARS-CoV-2 viral load based on concurrent RT-PCR testing. Overall, the sensitive and automated TAb and SNAb assays allow detection of early SARS-CoV-2 antibodies which associate with mortality.


Subject(s)
COVID-19
5.
preprints.org; 2020.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-202006.0079.v2

ABSTRACT

In this review, we address issues that relate to the rapid “Warp Speed” development of vaccines to counter the COVID-19 pandemic. We review the antibody response that is triggered by SARS-CoV-2 infection of humans, and how it may inform vaccine research. The isolation and properties of neutralizing monoclonal antibodies from COVID-19 patients provide additional information on what vaccines should try to elicit. The nature and longevity of the antibody response to coronaviruses are relevant to the potency and duration of vaccine-induced immunity. We summarize the immunogenicity of leading vaccine candidates tested to date in animals and humans, and discuss the outcome and interpretation of virus-challenge experiments in animals. By far the most immunogenic vaccine candidates for antibody responses are recombinant proteins, which are not included in the initial wave of “Warp Speed” immunogens. A substantial concern for SARS-CoV-2 vaccines is adverse events, which we review by considering what was seen in studies of SARS-CoV-1 and MERS-CoV vaccines. We conclude by outlining the possible outcomes of the “Warp Speed” vaccine program, which range from the hoped-for rapid success to a catastrophic adverse influence on vaccine uptake generally.


Subject(s)
COVID-19
6.
preprints.org; 2020.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202004.0326.v1

ABSTRACT

We review aspects of the antibody response to SARS-CoV-2, the causative agent of the COVID- 19 pandemic. The topics we cover are relevant to immunotherapy with plasma from recovered patients and with monoclonal antibodies against the viral S-protein. The development of vaccines against SARS-CoV-2, an essential public health tool, will also be informed by an understanding of the antibody response in infected patients. Although virus-neutralizing antibodies are likely to protect, antibodies could potentially trigger immunopathogenic events in SARS-CoV-2-infected patients or enhance infection. An awareness of these possibilities may benefit clinicians and the developers of antibody-based therapies and vaccines.

SELECTION OF CITATIONS
SEARCH DETAIL